MCP server for RAG-based document search and management
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Add a document to the RAG system.
Parameters:
url
(required): Document URL/identifiercontent
(required): Document contentmetadata
(optional): Document metadata
title
: Document titlecontentType
: Content type (e.g., “text/markdown”)Search through stored documents using semantic similarity.
Parameters:
query
(required): Natural language search queryoptions
(optional):
limit
: Maximum number of results (1-20, default: 5)scoreThreshold
: Minimum similarity score (0-1, default: 0.7)filters
:
domain
: Filter by domainhasCode
: Filter for documents containing codeafter
: Filter for documents after date (ISO format)before
: Filter for documents before date (ISO format)List all stored documents with pagination and grouping options.
Parameters (all optional):
page
: Page number (default: 1)pageSize
: Number of documents per page (1-100, default: 20)groupByDomain
: Group documents by domain (default: false)sortBy
: Sort field (“timestamp”, “title”, or “domain”)sortOrder
: Sort order (“asc” or “desc”)Delete a document from the RAG system.
Parameters:
url
(required): URL of the document to deletenpm install -g @mcpservers/ragdocs
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using Qdrant Cloud:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "https://your-cluster-url.qdrant.tech",
"QDRANT_API_KEY": "your-qdrant-api-key",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using OpenAI:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "openai",
"OPENAI_API_KEY": "your-api-key"
}
}
}
}
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
QDRANT_URL
: URL of your Qdrant instance
QDRANT_API_KEY
: API key for Qdrant Cloud (required when using cloud instance)EMBEDDING_PROVIDER
: Choice of embedding provider (“ollama” or “openai”, default: “ollama”)OPENAI_API_KEY
: OpenAI API key (required if using OpenAI)EMBEDDING_MODEL
: Model to use for embeddings
Apache License 2.0
Mcp
The registry mcp server updates your resume while you code
Mcp2serial
A open-source library enabling AI models to control hardware devices via serial communication using the MCP protocol. Initial support for Raspberry Pi Pico.
Obsidian Mcp Server
Obsidian Knowledge-Management MCP (Model Context Protocol) server that enables AI agents and development tools to interact with an Obsidian vault. It provides a comprehensive suite of tools for reading, writing, searching, and managing notes, tags, and frontmatter, acting as a bridge to the Obsidian Local REST API plugin.
Created
June 17, 2025
Last Updated
June 17, 2025
Category
Search & Knowledge DiscoveryAuthor
heltonteixeira
An intelligent MCP server that serves as a guardian of development knowledge, providing Cline assistants with curated access to latest documentation and best practices across the software development landscape
simple logseq mcp server
MCP to explore websites with llms.txt files
PubMed MCP Server for accessing research papers