MCP Server LogoMCP Server
MCPsCategoriesDirectorySubmit
Submit
MCPsCategoriesDirectorySubmit
Submit

MCP Servers

A curated list of MCP Servers, featuring Awesome MCP Servers and Claude MCP integration.

Contact Us

[email protected]

About

Privacy PolicyTerms of Service

Resources

Model Context ProtocolMCP Starter GuideClaude MCP Servers

Community

GitHub

© 2025 mcpserver.cc © 2025 MCP Server. All rights reserved.

Privacy PolicyTerms of Service
  1. Home
  2. /Categories
  3. /Search & Knowledge Discovery
  4. /Ragdocs
Ragdocs

Ragdocs

Created by heltonteixeira•2 days ago
Visit Website

MCP server for RAG-based document search and management

Search & Knowledge Discovery
serverRAG-baseddocumentsearchmanagement

RagDocs MCP Server

A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.

Features

  • Add documentation with metadata
  • Semantic search through documents
  • List and organize documentation
  • Delete documents
  • Support for both Ollama (free) and OpenAI (paid) embeddings
  • Automatic text chunking and embedding generation
  • Vector storage with Qdrant

Prerequisites

  • Node.js 16 or higher
  • One of the following Qdrant setups:
    • Local instance using Docker (free)
    • Qdrant Cloud account with API key (managed service)
  • One of the following for embeddings:
    • Ollama running locally (default, free)
    • OpenAI API key (optional, paid)

Available Tools

1. add_document

Add a document to the RAG system.

Parameters:

  • url (required): Document URL/identifier
  • content (required): Document content
  • metadata (optional): Document metadata
    • title: Document title
    • contentType: Content type (e.g., “text/markdown”)

2. search_documents

Search through stored documents using semantic similarity.

Parameters:

  • query (required): Natural language search query
  • options (optional):
    • limit: Maximum number of results (1-20, default: 5)
    • scoreThreshold: Minimum similarity score (0-1, default: 0.7)
    • filters:
      • domain: Filter by domain
      • hasCode: Filter for documents containing code
      • after: Filter for documents after date (ISO format)
      • before: Filter for documents before date (ISO format)

3. list_documents

List all stored documents with pagination and grouping options.

Parameters (all optional):

  • page: Page number (default: 1)
  • pageSize: Number of documents per page (1-100, default: 20)
  • groupByDomain: Group documents by domain (default: false)
  • sortBy: Sort field (“timestamp”, “title”, or “domain”)
  • sortOrder: Sort order (“asc” or “desc”)

4. delete_document

Delete a document from the RAG system.

Parameters:

  • url (required): URL of the document to delete

Installation

npm install -g @mcpservers/ragdocs

MCP Server Configuration

{
  "mcpServers": {
    "ragdocs": {
      "command": "node",
      "args": ["@mcpservers/ragdocs"],
      "env": {
        "QDRANT_URL": "http://127.0.0.1:6333",
        "EMBEDDING_PROVIDER": "ollama"
      }
    }
  }
}

Using Qdrant Cloud:

{
  "mcpServers": {
    "ragdocs": {
      "command": "node",
      "args": ["@mcpservers/ragdocs"],
      "env": {
        "QDRANT_URL": "https://your-cluster-url.qdrant.tech",
        "QDRANT_API_KEY": "your-qdrant-api-key",
        "EMBEDDING_PROVIDER": "ollama"
      }
    }
  }
}

Using OpenAI:

{
  "mcpServers": {
    "ragdocs": {
      "command": "node",
      "args": ["@mcpservers/ragdocs"],
      "env": {
        "QDRANT_URL": "http://127.0.0.1:6333",
        "EMBEDDING_PROVIDER": "openai",
        "OPENAI_API_KEY": "your-api-key"
      }
    }
  }
}

Local Qdrant with Docker

docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant

Environment Variables

  • QDRANT_URL: URL of your Qdrant instance
    • For local: “http://127.0.0.1:6333” (default)
    • For cloud: “https://your-cluster-url.qdrant.tech”
  • QDRANT_API_KEY: API key for Qdrant Cloud (required when using cloud instance)
  • EMBEDDING_PROVIDER: Choice of embedding provider (“ollama” or “openai”, default: “ollama”)
  • OPENAI_API_KEY: OpenAI API key (required if using OpenAI)
  • EMBEDDING_MODEL: Model to use for embeddings
    • For Ollama: defaults to “nomic-embed-text”
    • For OpenAI: defaults to “text-embedding-3-small”

License

Apache License 2.0

Prerequisites

  • •Familiarity with the server domain
  • •Basic understanding of related technologies
  • •Knowledge of Search & Knowledge Discovery

Recommended Server

Mcp

Mcp

The registry mcp server updates your resume while you code

Mcp2serial

Mcp2serial

A open-source library enabling AI models to control hardware devices via serial communication using the MCP protocol. Initial support for Raspberry Pi Pico.

Obsidian Mcp Server

Obsidian Mcp Server

Obsidian Knowledge-Management MCP (Model Context Protocol) server that enables AI agents and development tools to interact with an Obsidian vault. It provides a comprehensive suite of tools for reading, writing, searching, and managing notes, tags, and frontmatter, acting as a bridge to the Obsidian Local REST API plugin.

View more → →

Details

Created

June 17, 2025

Last Updated

June 17, 2025

Category

Search & Knowledge Discovery

Author

heltonteixeira

Share

More Server

Mcp Codex Keeper

Mcp Codex Keeper

An intelligent MCP server that serves as a guardian of development knowledge, providing Cline assistants with curated access to latest documentation and best practices across the software development landscape

Logseq Mcp

Logseq Mcp

simple logseq mcp server

Mcp Llms Txt Explorer

Mcp Llms Txt Explorer

MCP to explore websites with llms.txt files

Mcp Pubmed Server

Mcp Pubmed Server

PubMed MCP Server for accessing research papers