DBT CLI MCP Server
A Model Context Protocol (MCP) server that wraps the dbt CLI tool, enabling AI coding agents to interact with dbt projects through standardized MCP tools.
uv
tool for Python environment management## Clone the repository with submodules
git clone --recurse-submodules https://github.com/yourusername/dbt-cli-mcp.git
cd dbt-cli-mcp
## If you already cloned without --recurse-submodules, initialize the submodule
## git submodule update --init
## Create and activate a virtual environment
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
## Install dependencies
uv pip install -e .
## For development, install development dependencies
uv pip install -e ".[dev]"
The package provides a command-line interface for direct interaction with dbt:
## Run dbt models
dbt-mcp run --models customers --project-dir /path/to/project
## Run dbt models with a custom profiles directory
dbt-mcp run --models customers --project-dir /path/to/project --profiles-dir /path/to/profiles
## List dbt resources
dbt-mcp ls --resource-type model --output-format json
## Run dbt tests
dbt-mcp test --project-dir /path/to/project
## Get help
dbt-mcp --help
dbt-mcp run --help
You can also use the module directly:
python -m src.cli run --models customers --project-dir /path/to/project
--dbt-path
: Path to dbt executable (default: “dbt”)--env-file
: Path to environment file (default: “.env”)--log-level
: Logging level (default: “INFO”)--profiles-dir
: Path to directory containing profiles.yml file (defaults to project-dir if not specified)The server can also be configured using environment variables:
DBT_PATH
: Path to dbt executableENV_FILE
: Path to environment fileLOG_LEVEL
: Logging levelDBT_PROFILES_DIR
: Path to directory containing profiles.yml fileTo use the server with an MCP client like Claude for Desktop, add it to the client’s configuration:
{
"mcpServers": {
"dbt": {
"command": "uv",
"args": ["--directory", "/path/to/dbt-cli-mcp", "run", "src/server.py"],
"env": {
"DBT_PATH": "/absolute/path/to/dbt",
"ENV_FILE": ".env"
// You can also set DBT_PROFILES_DIR here for a server-wide default
}
}
}
}
When using any tool from this MCP server, you MUST specify the FULL ABSOLUTE PATH to your dbt project directory with the project_dir
parameter. Relative paths will not work correctly.
// ❌ INCORRECT - Will NOT work
{
"project_dir": "."
}
// ✅ CORRECT - Will work
{
"project_dir": "/Users/username/path/to/your/dbt/project"
}
See the complete dbt MCP usage guide{:target=“_blank”} for more detailed instructions and examples.
The server provides the following MCP tools:
dbt_run
: Run dbt models (requires absolute project_dir
)dbt_test
: Run dbt tests (requires absolute project_dir
)dbt_ls
: List dbt resources (requires absolute project_dir
)dbt_compile
: Compile dbt models (requires absolute project_dir
)dbt_debug
: Debug dbt project setup (requires absolute project_dir
)dbt_deps
: Install dbt package dependencies (requires absolute project_dir
)dbt_seed
: Load CSV files as seed data (requires absolute project_dir
)dbt_show
: Preview model results (requires absolute project_dir
)
### dbt Profiles Configuration
When using the dbt MCP tools, it's important to understand how dbt profiles are handled:
1. The `project_dir` parameter **MUST** be an absolute path (e.g., `/Users/username/project` not `.`) that points to a directory containing both:
- A valid `dbt_project.yml` file
- A valid `profiles.yml` file with the profile referenced in the project
2. The MCP server automatically sets the `DBT_PROFILES_DIR` environment variable to the absolute path of the directory specified in `project_dir`. This tells dbt where to look for the profiles.yml file.
3. If you encounter a "Could not find profile named 'X'" error, it means either:
- The profiles.yml file is missing from the project directory
- The profiles.yml file doesn't contain the profile referenced in dbt_project.yml
- You provided a relative path instead of an absolute path for `project_dir`
Example of a valid profiles.yml file:
```yaml
jaffle_shop: # This name must match the profile in dbt_project.yml
target: dev
outputs:
dev:
type: duckdb
path: 'jaffle_shop.duckdb'
threads: 24
When running commands through the MCP server, ensure your project directory is structured correctly with both configuration files present.
The project includes integration tests that verify functionality against a real dbt project:
## Run all integration tests
python integration_tests/run_all.py
## Run a specific integration test
python integration_tests/test_dbt_run.py
The integration tests use the jaffle_shop_duckdb project which is included as a Git submodule in the dbt_integration_tests directory. When you clone the repository with --recurse-submodules
as mentioned in the Setup section, this will automatically be initialized.
If you need to update the test project to the latest version from the original repository:
git submodule update --remote dbt_integration_tests/jaffle_shop_duckdb
If you’re seeing errors about missing files in the jaffle_shop_duckdb directory, you may need to initialize the submodule:
git submodule update --init
MIT