MCP Server LogoMCP Server
MCPsカテゴリディレクトリ投稿する
投稿する
MCPsカテゴリディレクトリ投稿する
投稿する

MCPサーバー

MCPサーバーのリスト、Awesome MCPサーバーとClaude MCP統合を含む。AIの能力を強化するためのMCPサーバーを検索して発見します。

お問い合わせ

[email protected]

MCPサーバーについて

プライバシーポリシー利用規約

リソース

モデルコンテキストプロトコルMCPスターターガイドClaude MCPサーバー

コミュニティ

GitHub

© 2025 mcpserver.cc © 2025 MCPサーバー. 全著作権所有.

プライバシーポリシー利用規約
  1. Home
  2. /Categories
  3. /Search & Knowledge Discovery
  4. /Mcp Qdrant Memory
Mcp Qdrant Memory

Mcp Qdrant Memory

作成者 delorenj•3 days ago
サイトを訪問する

MCP server providing a knowledge graph implementation with semantic search capabilities powered by Qdrant vector database

Search & Knowledge Discovery
serverprovidingknowledgegraphimplementation

MCP Memory Server with Qdrant Persistence

This MCP server provides a knowledge graph implementation with semantic search capabilities powered by Qdrant vector database.

Features

  • Graph-based knowledge representation with entities and relations
  • File-based persistence (memory.json)
  • Semantic search using Qdrant vector database
  • OpenAI embeddings for semantic similarity
  • HTTPS support with reverse proxy compatibility
  • Docker support for easy deployment

Environment Variables

The following environment variables are required:

## OpenAI API key for generating embeddings
OPENAI_API_KEY=your-openai-api-key

## Qdrant server URL (supports both HTTP and HTTPS)
QDRANT_URL=https://your-qdrant-server

## Qdrant API key (if authentication is enabled)
QDRANT_API_KEY=your-qdrant-api-key

## Name of the Qdrant collection to use
QDRANT_COLLECTION_NAME=your-collection-name

Setup

Local Setup

  1. Install dependencies:
npm install
  1. Build the server:
npm run build

Docker Setup

  1. Build the Docker image:
docker build -t mcp-qdrant-memory .
  1. Run the Docker container with required environment variables:
docker run -d \
  -e OPENAI_API_KEY=your-openai-api-key \
  -e QDRANT_URL=http://your-qdrant-server:6333 \
  -e QDRANT_COLLECTION_NAME=your-collection-name \
  -e QDRANT_API_KEY=your-qdrant-api-key \
  --name mcp-qdrant-memory \
  mcp-qdrant-memory

Add to MCP settings:

{
  "mcpServers": {
    "memory": {
      "command": "/bin/zsh",
      "args": ["-c", "cd /path/to/server && node dist/index.js"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key",
        "QDRANT_API_KEY": "your-qdrant-api-key",
        "QDRANT_URL": "http://your-qdrant-server:6333",
        "QDRANT_COLLECTION_NAME": "your-collection-name"
      },
      "alwaysAllow": [
        "create_entities",
        "create_relations",
        "add_observations",
        "delete_entities",
        "delete_observations",
        "delete_relations",
        "read_graph",
        "search_similar"
      ]
    }
  }
}

Tools

Entity Management

  • create_entities: Create multiple new entities
  • create_relations: Create relations between entities
  • add_observations: Add observations to entities
  • delete_entities: Delete entities and their relations
  • delete_observations: Delete specific observations
  • delete_relations: Delete specific relations
  • read_graph: Get the full knowledge graph

Semantic Search

  • search_similar: Search for semantically similar entities and relations
    interface SearchParams {
      query: string;     // Search query text
      limit?: number;    // Max results (default: 10)
    }
    

Implementation Details

The server maintains two forms of persistence:

  1. File-based (memory.json):

    • Complete knowledge graph structure
    • Fast access to full graph
    • Used for graph operations
  2. Qdrant Vector DB:

    • Semantic embeddings of entities and relations
    • Enables similarity search
    • Automatically synchronized with file storage

Synchronization

When entities or relations are modified:

  1. Changes are written to memory.json
  2. Embeddings are generated using OpenAI
  3. Vectors are stored in Qdrant
  4. Both storage systems remain consistent

Search Process

When searching:

  1. Query text is converted to embedding
  2. Qdrant performs similarity search
  3. Results include both entities and relations
  4. Results are ranked by semantic similarity

Example Usage

// Create entities
await client.callTool("create_entities", {
  entities: [{
    name: "Project",
    entityType: "Task",
    observations: ["A new development project"]
  }]
});

// Search similar concepts
const results = await client.callTool("search_similar", {
  query: "development tasks",
  limit: 5
});

HTTPS and Reverse Proxy Configuration

The server supports connecting to Qdrant through HTTPS and reverse proxies. This is particularly useful when:

  • Running Qdrant behind a reverse proxy like Nginx or Apache
  • Using self-signed certificates
  • Requiring custom SSL/TLS configurations

Setting up with a Reverse Proxy

  1. Configure your reverse proxy (example using Nginx):
server {
    listen 443 ssl;
    server_name qdrant.yourdomain.com;

    ssl_certificate /path/to/cert.pem;
    ssl_certificate_key /path/to/key.pem;

    location / {
        proxy_pass http://localhost:6333;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
    }
}
  1. Update your environment variables:
QDRANT_URL=https://qdrant.yourdomain.com

Security Considerations

The server implements robust HTTPS handling with:

  • Custom SSL/TLS configuration
  • Proper certificate verification options
  • Connection pooling and keepalive
  • Automatic retry with exponential backoff
  • Configurable timeouts

Troubleshooting HTTPS Connections

If you experience connection issues:

  1. Verify your certificates:
openssl s_client -connect qdrant.yourdomain.com:443
  1. Test direct connectivity:
curl -v https://qdrant.yourdomain.com/collections
  1. Check for any proxy settings:
env | grep -i proxy

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

License

MIT

前提条件

  • •サーバーのドメインに精通している
  • •関連技術の基本的な理解
  • •Search & Knowledge Discoveryの知識

おすすめのサーバー

Mcp Server Qrcode

Mcp Server Qrcode

Model Context Protocol server for generating QR codes

Twitch Mcp Server

Twitch Mcp Server

A Model Context Protocol (MCP) server that provides tools for interacting with the Twitch API using the Helix API.

Terraform Mcp Server

Terraform Mcp Server

Terraform Registry MCP Server

もっと見る → →

詳細

作成日

June 17, 2025

最終更新日

June 17, 2025

カテゴリー

Search & Knowledge Discovery

作成者

delorenj

シェアする

もっと見る

Mcp Guide

Mcp Guide

A beginner-friendly guide server that helps users understand MCP concepts, provides interactive examples, and demonstrates best practices for building MCP integrations. Features tools for exploring MCP capabilities, resources for learning core concepts, and prompts for guided tutorials.

Python_mcp

Python_mcp

MCP Server to run python code locally

Mcp Server Salesforce

Mcp Server Salesforce

Salesforce MCP Server

Mcp Taskwarrior

Mcp Taskwarrior

A simple MCP Server for Taskwarrior