MCP server for RAG-based document search and management
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Add a document to the RAG system.
Parameters:
url
(required): Document URL/identifiercontent
(required): Document contentmetadata
(optional): Document metadata
title
: Document titlecontentType
: Content type (e.g., “text/markdown”)Search through stored documents using semantic similarity.
Parameters:
query
(required): Natural language search queryoptions
(optional):
limit
: Maximum number of results (1-20, default: 5)scoreThreshold
: Minimum similarity score (0-1, default: 0.7)filters
:
domain
: Filter by domainhasCode
: Filter for documents containing codeafter
: Filter for documents after date (ISO format)before
: Filter for documents before date (ISO format)List all stored documents with pagination and grouping options.
Parameters (all optional):
page
: Page number (default: 1)pageSize
: Number of documents per page (1-100, default: 20)groupByDomain
: Group documents by domain (default: false)sortBy
: Sort field (“timestamp”, “title”, or “domain”)sortOrder
: Sort order (“asc” or “desc”)Delete a document from the RAG system.
Parameters:
url
(required): URL of the document to deletenpm install -g @mcpservers/ragdocs
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using Qdrant Cloud:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "https://your-cluster-url.qdrant.tech",
"QDRANT_API_KEY": "your-qdrant-api-key",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using OpenAI:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "openai",
"OPENAI_API_KEY": "your-api-key"
}
}
}
}
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
QDRANT_URL
: URL of your Qdrant instance
QDRANT_API_KEY
: API key for Qdrant Cloud (required when using cloud instance)EMBEDDING_PROVIDER
: Choice of embedding provider (“ollama” or “openai”, default: “ollama”)OPENAI_API_KEY
: OpenAI API key (required if using OpenAI)EMBEDDING_MODEL
: Model to use for embeddings
Apache License 2.0
Mcp 3d Printer Server
Connects MCP to major 3D printer APIs (Orca, Bambu, OctoPrint, Klipper, Duet, Repetier, Prusa, Creality). Control prints, monitor status, and perform advanced STL operations like scaling, rotation, sectional editing, and base extension. Includes slicing and visualization.
Mcp Sentry
A Model Context Protocol server for retrieving and analyzing issues from Sentry.io
Uiflowchartcreator
MCP server for creating UI flowcharts
A MCP server for Resend API. Let LLMs compose and send emails for you.
The registry mcp server updates your resume while you code
A simple note-taking MCP server for recording and managing notes with AI models.
A Model Context Protocol (MCP) server that enables AI assistants to perform network scanning operations using NMAP