MCP Server LogoMCP Server
MCPsカテゴリディレクトリ投稿する
投稿する
MCPsカテゴリディレクトリ投稿する
投稿する

MCPサーバー

MCPサーバーのリスト、Awesome MCPサーバーとClaude MCP統合を含む。AIの能力を強化するためのMCPサーバーを検索して発見します。

お問い合わせ

[email protected]

MCPサーバーについて

プライバシーポリシー利用規約

リソース

モデルコンテキストプロトコルMCPスターターガイドClaude MCPサーバー

コミュニティ

GitHub

© 2025 mcpserver.cc © 2025 MCPサーバー. 全著作権所有.

プライバシーポリシー利用規約
  1. Home
  2. /Categories
  3. /Search & Knowledge Discovery
  4. /Tavily Search Mcp Server
Tavily Search Mcp Server

Tavily Search Mcp Server

作成者 apappascs•3 days ago
サイトを訪問する

An MCP server implementation that integrates the Tavily Search API, providing optimized search capabilities for LLMs.

Search & Knowledge Discovery
serverTavilyAPILLM

Tavily Search MCP Server

An MCP server implementation that integrates the Tavily Search API, providing optimized search capabilities for LLMs.

tavily-search-mcp-server MCP server

Features

  • Web Search: Perform web searches optimized for LLMs, with control over search depth, topic, and time range.
  • Content Extraction: Extracts the most relevant content from search results, optimizing for quality and size.
  • Optional Features: Include images, image descriptions, short LLM-generated answers, and raw HTML content.
  • Domain Filtering: Include or exclude specific domains in search results.

Tools

  • tavily_search
    • Execute web searches using the Tavily Search API.
    • Inputs:
      • query (string, required): The search query.
      • search_depth (string, optional): “basic” or “advanced” (default: “basic”).
      • topic (string, optional): “general” or “news” (default: “general”).
      • days (number, optional): Number of days back for news search (default: 3).
      • time_range (string, optional): Time range filter (“day”, “week”, “month”, “year” or “d”, “w”, “m”, “y”).
      • max_results (number, optional): Maximum number of results (default: 5).
      • include_images (boolean, optional): Include related images (default: false).
      • include_image_descriptions (boolean, optional): Include descriptions for images (default: false).
      • include_answer (boolean, optional): Include a short LLM-generated answer (default: false).
      • include_raw_content (boolean, optional): Include raw HTML content (default: false).
      • include_domains (string[], optional): Domains to include.
      • exclude_domains (string[], optional): Domains to exclude.

Setup Guide 🚀

1. Prerequisites

  • Claude Desktop installed on your computer.
  • A Tavily API key: a. Sign up for a Tavily API account. b. Choose a plan (Free tier available). c. Generate your API key from the Tavily dashboard.

2. Installation

  1. Clone this repository somewhere on your computer:

    git clone https://github.com/apappascs/tavily-search-mcp-server.git 
    
  2. Install dependencies & build the project:

    cd tavily-search-mcp-server
    
    npm install
    
    npm run build
    

3. Integration with Claude Desktop

  1. Open your Claude Desktop configuration file:

    # On Mac:
    ~/Library/Application\ Support/Claude/claude_desktop_config.json
    
    # On Windows:
    %APPDATA%\Claude\claude_desktop_config.json
    
  2. Add one of the following to the mcpServers object in your config, depending on whether you want to run the server using npm or docker:

    Option A: Using NPM (stdio transport)

    {
        "mcpServers": {
            "tavily-search-server": {
                "command": "node",
                "args": [
                    "/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server/dist/index.js"
                ],
                "env": {
                    "TAVILY_API_KEY": "your_api_key_here"
                }
            }
        }
    }
    

    Option B: Using NPM (SSE transport)

    {
        "mcpServers": {
            "tavily-search-server": {
                "command": "node",
                "args": [
                    "/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server/dist/sse.js"
                ],
                "env": {
                    "TAVILY_API_KEY": "your_api_key_here"
                },
                "port": 3001
            }
        }
    }
    

    Option C: Using Docker

    {
        "mcpServers": {
            "tavily-search-server": {
                "command": "docker",
                "args": [
                    "run",
                    "-i",
                    "--rm",
                    "-e",
                    "TAVILY_API_KEY",
                    "-v",
                    "/Users/<username>/<FULL_PATH...>/tavily-search-mcp-server:/app",
                    "tavily-search-mcp-server"
                ],
                "env": {
                    "TAVILY_API_KEY": "your_api_key_here"
                }
            }
        }
    }
    
  3. Important Steps:

    • Replace /Users/<username>/<FULL_PATH...>/tavily-search-mcp-server with the actual full path to where you cloned the repository.
    • Add your Tavily API key in the env section. It’s always better to have secrets like API keys as environment variables.
    • Make sure to use forward slashes (/) in the path, even on Windows.
    • If you are using docker make sure you build the image first using docker build -t tavily-search-mcp-server:latest .
  4. Restart Claude Desktop for the changes to take effect.

Installing via Smithery

To install Tavily Search for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @apappascs/tavily-search-mcp-server --client claude

Environment Setup (for npm)

  1. Copy .env.example to .env:

    cp .env.example .env
    
  2. Update the .env file with your actual Tavily API key:

    TAVILY_API_KEY=your_api_key_here
    

    Note: Never commit your actual API key to version control. The .env file is ignored by git for security reasons.

Running with NPM

Start the server using Node.js:

node dist/index.js

For sse transport:

node dist/sse.js

Running with Docker

  1. Build the Docker image (if you haven’t already):

    docker build -t tavily-search-mcp-server:latest .
    
  2. Run the Docker container with:

    For stdio transport:

    docker run -it --rm -e TAVILY_API_KEY="your_api_key_here" tavily-search-mcp-server:latest
    

    For sse transport:

    docker run -it --rm -p 3001:3001 -e TAVILY_API_KEY="your_api_key_here" -e TRANSPORT="sse" tavily-search-mcp-server:latest
    

    You can also leverage your shell’s environment variables directly, which is a more secure practice:

     docker run -it --rm -p 3001:3001 -e TAVILY_API_KEY=$TAVILY_API_KEY -e TRANSPORT="sse" tavily-search-mcp-server:latest
    

    Note: The second command demonstrates the recommended approach of using -e TAVILY_API_KEY=$TAVILY_API_KEY to pass the value of your TAVILY_API_KEY environment variable into the Docker container. This keeps your API key out of your command history, and it is generally preferred over hardcoding secrets in commands.

  3. Using docker compose

    Run:

    docker compose up -d
    

    To stop the server:

    docker compose down
    

License

This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.

前提条件

  • •サーバーのドメインに精通している
  • •関連技術の基本的な理解
  • •Search & Knowledge Discoveryの知識

おすすめのサーバー

Dubco Mcp Server

Dubco Mcp Server

MCP server for Dub.co link shortener API integration

Mcp X

Mcp X

Automate your X account using the real browser API

Perplexity Mcp Server

Perplexity Mcp Server

This Model Context Protocol (MCP) server enables LLMs like Claude to perform internet research using the Perplexity API. It provides real-time, up-to-date information with source citations.

もっと見る → →

詳細

作成日

August 29, 2025

最終更新日

August 29, 2025

カテゴリー

Search & Knowledge Discovery

作成者

apappascs

シェアする

もっと見る

Webflow Mcp Server

Webflow Mcp Server

Webflow MCP server

Pty Mcp

Pty Mcp

An MCP tool server that provides a stateful terminal.

Mcp Jira Python

Mcp Jira Python

JIRA MCP Server Implementation in Python

Comfyui Mcp Server

Comfyui Mcp Server

lightweight Python-based MCP (Model Context Protocol) server for local ComfyUI